A more sensible way to count.
[cellular-automata.git] / polymorphism / 001 / src / polymorphism.ml
1 open Core.Std
2
3
4 let (|-) g f x = f (g x)
5
6
7 module Terminal :
8 sig
9 type color = [ `green
10 | `red
11 | `white
12 ]
13
14 val string_with_color : string -> color -> string
15
16 val clear : unit -> unit
17
18 val reset : unit -> unit
19 end =
20 struct
21 type color = [ `green
22 | `red
23 | `white
24 ]
25
26 let ansi_code_clear = "\027[2J" (* Clear screen *)
27 let ansi_code_reset = "\027[1;1H" (* Reset cursor position *)
28
29 let string_of_color = function
30 | `green -> "\027[0;32m"
31 | `red -> "\027[1;31m"
32 | `white -> "\027[1;37m"
33
34 let string_with_color s c =
35 sprintf "%s%s\027[0m" (string_of_color c) s
36
37 let clear () =
38 print_string ansi_code_clear
39
40 let reset () =
41 print_string ansi_code_reset
42 end
43
44
45 module Matrix :
46 sig
47 module Point :
48 sig
49 type t = {r : int; k : int}
50 end
51
52 type 'a t
53
54 val create : rs:int -> ks:int -> 'a -> 'a t
55
56 val get_neighbors : 'a t -> Point.t -> 'a list
57
58 val map : 'a t -> f:('a -> 'b) -> 'b t
59
60 val mapi : 'a t -> f:(Point.t -> 'a -> 'b) -> 'b t
61
62 val iter : 'a t -> f:(Point.t -> 'a -> unit) -> unit
63
64 val print : 'a t -> to_string:('a -> string) -> unit
65 end =
66 struct
67 module Point =
68 struct
69 type t = {r : int; k : int}
70
71 let (+) p p' =
72 { r = p.r + p'.r
73 ; k = p.k + p'.k
74 }
75 end
76
77 module Direction =
78 struct
79 type t = NW | N | NE
80 | W | E
81 | SW | S | SE
82
83 let all = [ NW ; N ; NE
84 ; W ; E
85 ; SW ; S ; SE
86 ]
87
88 let to_offset =
89 let open Point in
90 function
91 | NW -> {r = -1; k = -1}
92 | N -> {r = -1; k = 0}
93 | NE -> {r = -1; k = 1}
94 | W -> {r = 0; k = -1}
95 | E -> {r = 0; k = 1}
96 | SW -> {r = 1; k = -1}
97 | S -> {r = 1; k = 0}
98 | SE -> {r = 1; k = 1}
99 end
100
101 type 'a t = 'a array array
102
103 let create ~rs ~ks x =
104 Array.make_matrix ~dimx:rs ~dimy:ks x
105
106 let iter t ~f =
107 Array.iteri t ~f:(
108 fun r ks ->
109 Array.iteri ks ~f:(
110 fun k x ->
111 f {Point.r; Point.k} x
112 )
113 )
114
115 let print t ~to_string =
116 Array.iter t ~f:(
117 fun r ->
118 Array.iter r ~f:(fun x -> printf "%s" (to_string x));
119 print_newline ()
120 )
121
122 let map t ~f =
123 Array.map t ~f:(Array.map ~f:(fun x -> f x))
124
125 let mapi t ~f =
126 Array.mapi t ~f:(
127 fun r ks ->
128 Array.mapi ks ~f:(
129 fun k x ->
130 f {Point.r; Point.k} x
131 )
132 )
133
134 let get t {Point.r; Point.k} =
135 t.(r).(k)
136
137 let is_within_bounds t {Point.r; Point.k} =
138 match t with
139 | [||] -> assert false
140 | t ->
141 r >= 0 && r < Array.length t &&
142 k >= 0 && k < Array.length t.(0)
143
144 let neighborhood t point =
145 List.map Direction.all ~f:Direction.to_offset
146 |> List.map ~f:(fun offset_point -> Point.(point + offset_point))
147 |> List.filter ~f:(is_within_bounds t)
148
149 let get_neighbors t point =
150 List.map (neighborhood t point) ~f:(get t)
151 end
152
153
154 module PhenoType :
155 sig
156 type t
157
158 val create : char -> Terminal.color option -> t
159
160 val to_string : t -> string
161 end =
162 struct
163 type t = { color : Terminal.color option
164 ; character : char
165 }
166
167 let create character color =
168 {color; character}
169
170 let to_string = function
171 | {color=None; character} ->
172 String.of_char character
173 | {color=Some c; character} ->
174 Terminal.string_with_color (String.of_char character) c
175 end
176
177
178 module Cell =
179 struct
180 module State =
181 struct
182 type intention = Friendly
183 | Neutral
184 | Hostile
185
186 type t = Alive of intention
187 | Dead
188 end
189
190 type t = { state : State.t
191 ; pheno : PhenoType.t
192 }
193 end
194
195
196 module type RULE =
197 sig
198 val create : unit -> Cell.t
199
200 val transition : self:Cell.State.t
201 -> neighbors:Cell.State.t list
202 -> Cell.t
203 end
204
205
206 module Life : RULE =
207 struct
208 module State :
209 sig
210 type t = D | A
211
212 val of_int : int -> t
213
214 val is_alive : t -> bool
215
216 val to_cell : t -> Cell.t
217
218 val of_cell_state : Cell.State.t -> t
219
220 val next : t -> live_neighbors:int -> t
221 end =
222 struct
223 type t = D | A
224
225 let of_int = function
226 | 0 -> D
227 | 1 -> A
228 | _ -> assert false
229
230 let is_alive = function
231 | D -> false
232 | A -> true
233
234 let to_pheno = function
235 | D -> PhenoType.create ' ' None
236 | A -> PhenoType.create 'o' (Some `white)
237
238 let of_cell_state = function
239 | Cell.State.Dead -> D
240 | Cell.State.Alive Cell.State.Friendly -> A
241 | Cell.State.Alive Cell.State.Neutral -> A
242 | Cell.State.Alive Cell.State.Hostile -> D
243
244 let to_cell_state = function
245 | D -> Cell.State.Dead
246 | A -> Cell.State.Alive Cell.State.Neutral
247
248 let to_cell t =
249 { Cell.state = t |> to_cell_state
250 ; Cell.pheno = t |> to_pheno
251 }
252
253 let next t ~live_neighbors =
254 match t with
255 | A when live_neighbors < 2 -> D
256 | A when live_neighbors < 4 -> A
257 | A when live_neighbors > 3 -> D
258 | D when live_neighbors = 3 -> A
259 | A -> A
260 | D -> D
261 end
262
263 let create () =
264 Random.int 2 |> State.of_int |> State.to_cell
265
266 let count_of_live =
267 List.map ~f:State.of_cell_state
268 |- List.filter ~f:State.is_alive
269 |- List.length
270
271 let transition ~self ~neighbors =
272 self |> State.of_cell_state
273 |> State.next ~live_neighbors:(count_of_live neighbors)
274 |> State.to_cell
275 end
276
277
278 module ForestFire : RULE =
279 struct
280 module State :
281 sig
282 type t = E | T | B
283
284 val is_burning : t -> bool
285
286 val of_int : int -> t
287
288 val to_cell : t -> Cell.t
289
290 val of_cell_state : Cell.State.t -> t
291
292 val next : t -> burning_neighbors:int -> t
293 end =
294 struct
295 type t = E | T | B
296
297 let is_burning = function
298 | E -> false
299 | T -> false
300 | B -> true
301
302 let of_int = function
303 | 0 -> E
304 | 1 -> T
305 | 2 -> B
306 | _ -> assert false
307
308 let to_pheno = function
309 | E -> PhenoType.create ' ' None
310 | T -> PhenoType.create 'T' (Some `green)
311 | B -> PhenoType.create '#' (Some `red)
312
313 let of_cell_state = function
314 | Cell.State.Dead -> E
315 | Cell.State.Alive Cell.State.Friendly -> T
316 | Cell.State.Alive Cell.State.Neutral -> E
317 | Cell.State.Alive Cell.State.Hostile -> B
318
319 let to_cell_state = function
320 | E -> Cell.State.Dead
321 | T -> Cell.State.Alive Cell.State.Friendly
322 | B -> Cell.State.Alive Cell.State.Hostile
323
324 let to_cell t =
325 { Cell.state = t |> to_cell_state
326 ; Cell.pheno = t |> to_pheno
327 }
328
329 let f = 0.000001 (* Probability of spontaneous ignition *)
330 let p = 0.1 (* Probability of spontaneous growth *)
331
332 let is_probable p =
333 (Random.float 1.0) <= p
334
335 let next t ~burning_neighbors =
336 match t, burning_neighbors with
337 | E, _ when is_probable p -> T
338 | E, _ -> E
339 | T, 0 when is_probable f -> B
340 | T, _ when burning_neighbors > 0 -> B
341 | T, _ -> T
342 | B, _ -> E
343 end
344
345 let create () =
346 Random.int 3 |> State.of_int |> State.to_cell
347
348 let count_of_burning =
349 List.map ~f:State.of_cell_state
350 |- List.filter ~f:State.is_burning
351 |- List.length
352
353 let transition ~self ~neighbors =
354 self |> State.of_cell_state
355 |> State.next ~burning_neighbors:(count_of_burning neighbors)
356 |> State.to_cell
357 end
358
359
360 module Automaton :
361 sig
362 type t
363
364 val create : rows:int
365 -> columns:int
366 -> interval:float
367 -> rules: (module RULE) list
368 -> t
369
370 val loop : t -> unit
371 end =
372 struct
373 type cell = { data : Cell.t
374 ; rule : (module RULE)
375 }
376
377 type t = { grid : cell Matrix.t
378 ; interval : Time.Span.t
379 ; bar : string
380 }
381
382 let create ~rows:rs ~columns:ks ~interval ~rules =
383 let n = List.length rules in
384 let init () =
385 let rule = List.nth_exn rules (Random.int n) in
386 let module Rule = (val rule : RULE) in
387 { rule
388 ; data = Rule.create ()
389 }
390 in
391 Terminal.clear ();
392 { grid = Matrix.map ~f:init (Matrix.create ~rs ~ks ())
393 ; interval = Time.Span.of_float interval
394 ; bar = String.make ks '-'
395 }
396
397 let cell_to_string cell =
398 PhenoType.to_string cell.data.Cell.pheno
399
400 let print t =
401 Terminal.reset ();
402 print_endline t.bar;
403 Matrix.print t.grid ~to_string:cell_to_string;
404 print_endline t.bar
405
406 let next t =
407 let grid =
408 Matrix.mapi t.grid ~f:(
409 fun point {rule; data} ->
410 let module Rule = (val rule : RULE) in
411 let neighbors = Matrix.get_neighbors t.grid point in
412 let data =
413 Rule.transition
414 ~self:data.Cell.state
415 ~neighbors:(List.map neighbors ~f:(fun c -> c.data.Cell.state))
416 in
417 {rule; data}
418 )
419 in
420 {t with grid}
421
422 let rec loop t =
423 print t;
424 Time.pause t.interval;
425 loop (next t)
426 end
427
428
429 let main interval () =
430 Random.self_init ();
431 let rows, columns = Or_error.ok_exn Linux_ext.get_terminal_size () in
432 let rules =
433 [ (module Life : RULE)
434 ; (module ForestFire : RULE)
435 ]
436 in
437 Automaton.loop (Automaton.create ~rows:(rows - 3) ~columns ~interval ~rules)
438
439
440 let spec =
441 let summary = "Polymorphic Cellular Automata" in
442 let spec = Command.Spec.(empty
443 +> flag "-i" (optional_with_default 0.1 float)
444 ~doc:" Induced interval between generations."
445 )
446 in
447 Command.basic ~summary spec main
448
449
450 let () = Command.run spec
This page took 0.065428 seconds and 5 git commands to generate.