Cleaner composition.
[cellular-automata.git] / polymorphism / 001 / src / polymorphism.ml
1 open Core.Std
2
3
4 let (|-) g f x = f (g x)
5
6
7 module Terminal :
8 sig
9 type color = [ `green
10 | `red
11 | `white
12 ]
13
14 val string_with_color : string -> color -> string
15
16 val clear : unit -> unit
17
18 val reset : unit -> unit
19 end =
20 struct
21 type color = [ `green
22 | `red
23 | `white
24 ]
25
26 let ansi_code_clear = "\027[2J" (* Clear screen *)
27 let ansi_code_reset = "\027[1;1H" (* Reset cursor position *)
28
29 let string_of_color = function
30 | `green -> "\027[0;32m"
31 | `red -> "\027[1;31m"
32 | `white -> "\027[1;37m"
33
34 let string_with_color s c =
35 sprintf "%s%s\027[0m" (string_of_color c) s
36
37 let clear () =
38 print_string ansi_code_clear
39
40 let reset () =
41 print_string ansi_code_reset
42 end
43
44
45 module Matrix :
46 sig
47 module Point :
48 sig
49 type t = {r : int; k : int}
50 end
51
52 type 'a t
53
54 val create : rs:int -> ks:int -> 'a -> 'a t
55
56 val get_neighbors : 'a t -> Point.t -> 'a list
57
58 val map : 'a t -> f:('a -> 'b) -> 'b t
59
60 val mapi : 'a t -> f:(Point.t -> 'a -> 'b) -> 'b t
61
62 val iter : 'a t -> f:(Point.t -> 'a -> unit) -> unit
63
64 val print : 'a t -> to_string:('a -> string) -> unit
65 end =
66 struct
67 module Point =
68 struct
69 type t = {r : int; k : int}
70
71 let (+) p p' =
72 { r = p.r + p'.r
73 ; k = p.k + p'.k
74 }
75 end
76
77 module Direction =
78 struct
79 type t = NW | N | NE
80 | W | E
81 | SW | S | SE
82
83 let all = [ NW ; N ; NE
84 ; W ; E
85 ; SW ; S ; SE
86 ]
87
88 let to_offset =
89 let open Point in
90 function
91 | NW -> {r = -1; k = -1}
92 | N -> {r = -1; k = 0}
93 | NE -> {r = -1; k = 1}
94 | W -> {r = 0; k = -1}
95 | E -> {r = 0; k = 1}
96 | SW -> {r = 1; k = -1}
97 | S -> {r = 1; k = 0}
98 | SE -> {r = 1; k = 1}
99 end
100
101 type 'a t = 'a array array
102
103 let create ~rs ~ks x =
104 Array.make_matrix ~dimx:rs ~dimy:ks x
105
106 let iter t ~f =
107 Array.iteri t ~f:(
108 fun r ks ->
109 Array.iteri ks ~f:(
110 fun k x ->
111 f {Point.r; Point.k} x
112 )
113 )
114
115 let print t ~to_string =
116 Array.iter t ~f:(
117 fun r ->
118 Array.iter r ~f:(fun x -> printf "%s" (to_string x));
119 print_newline ()
120 )
121
122 let map t ~f =
123 Array.map t ~f:(Array.map ~f:(fun x -> f x))
124
125 let mapi t ~f =
126 Array.mapi t ~f:(
127 fun r ks ->
128 Array.mapi ks ~f:(
129 fun k x ->
130 f {Point.r; Point.k} x
131 )
132 )
133
134 let get t {Point.r; Point.k} =
135 t.(r).(k)
136
137 let is_within_bounds t {Point.r; Point.k} =
138 match t with
139 | [||] -> assert false
140 | t ->
141 r >= 0 && r < Array.length t &&
142 k >= 0 && k < Array.length t.(0)
143
144 let neighborhood t point =
145 List.map Direction.all ~f:Direction.to_offset
146 |> List.map ~f:(fun offset_point -> Point.(point + offset_point))
147 |> List.filter ~f:(is_within_bounds t)
148
149 let get_neighbors t point =
150 List.map (neighborhood t point) ~f:(get t)
151 end
152
153
154 module PhenoType :
155 sig
156 type t
157
158 val create : char -> Terminal.color option -> t
159
160 val to_string : t -> string
161 end =
162 struct
163 type t = { color : Terminal.color option
164 ; character : char
165 }
166
167 let create character color =
168 {color; character}
169
170 let to_string = function
171 | {color=None; character} ->
172 String.of_char character
173 | {color=Some c; character} ->
174 Terminal.string_with_color (String.of_char character) c
175 end
176
177
178 module Cell =
179 struct
180 module State =
181 struct
182 type intention = Friendly
183 | Neutral
184 | Hostile
185
186 type t = Alive of intention
187 | Dead
188 end
189
190 type t = { state : State.t
191 ; pheno : PhenoType.t
192 }
193 end
194
195
196 module type RULE =
197 sig
198 val create : unit -> Cell.t
199
200 val transition : self:Cell.State.t
201 -> neighbors:Cell.State.t list
202 -> Cell.t
203 end
204
205
206 module Life : RULE =
207 struct
208 module State :
209 sig
210 type t = D | A
211
212 val of_int : int -> t
213
214 val to_int : t -> int
215
216 val to_cell : t -> Cell.t
217
218 val of_cell_state : Cell.State.t -> t
219
220 val next : t -> live_neighbors:int -> t
221 end =
222 struct
223 type t = D | A
224
225 let of_int = function
226 | 0 -> D
227 | 1 -> A
228 | _ -> assert false
229
230 let to_int = function
231 | D -> 0
232 | A -> 1
233
234 let to_pheno = function
235 | D -> PhenoType.create ' ' None
236 | A -> PhenoType.create 'o' (Some `white)
237
238 let of_cell_state = function
239 | Cell.State.Dead -> D
240 | Cell.State.Alive Cell.State.Friendly -> A
241 | Cell.State.Alive Cell.State.Neutral -> A
242 | Cell.State.Alive Cell.State.Hostile -> D
243
244 let to_cell_state = function
245 | D -> Cell.State.Dead
246 | A -> Cell.State.Alive Cell.State.Neutral
247
248 let to_cell t =
249 { Cell.state = t |> to_cell_state
250 ; Cell.pheno = t |> to_pheno
251 }
252
253 let next t ~live_neighbors =
254 match t with
255 | A when live_neighbors < 2 -> D
256 | A when live_neighbors < 4 -> A
257 | A when live_neighbors > 3 -> D
258 | D when live_neighbors = 3 -> A
259 | A -> A
260 | D -> D
261 end
262
263 let create () =
264 Random.int 2 |> State.of_int |> State.to_cell
265
266 let count_of_live =
267 List.map ~f:State.of_cell_state
268 |- List.map ~f:State.to_int
269 |- List.fold_left ~f:(+) ~init:0
270
271 let transition ~self ~neighbors =
272 self |> State.of_cell_state
273 |> State.next ~live_neighbors:(count_of_live neighbors)
274 |> State.to_cell
275 end
276
277
278 module ForestFire : RULE =
279 struct
280 module State :
281 sig
282 type t = E | T | B
283
284 val is_burning : t -> bool
285
286 val of_int : int -> t
287
288 val to_int : t -> int
289
290 val to_cell : t -> Cell.t
291
292 val of_cell_state : Cell.State.t -> t
293
294 val next : t -> burning_neighbors:int -> t
295 end =
296 struct
297 type t = E | T | B
298
299 let is_burning = function
300 | E -> false
301 | T -> false
302 | B -> true
303
304 let of_int = function
305 | 0 -> E
306 | 1 -> T
307 | 2 -> B
308 | _ -> assert false
309
310 let to_int = function
311 | E -> 0
312 | T -> 1
313 | B -> 2
314
315 let to_pheno = function
316 | E -> PhenoType.create ' ' None
317 | T -> PhenoType.create 'T' (Some `green)
318 | B -> PhenoType.create '#' (Some `red)
319
320 let of_cell_state = function
321 | Cell.State.Dead -> E
322 | Cell.State.Alive Cell.State.Friendly -> T
323 | Cell.State.Alive Cell.State.Neutral -> E
324 | Cell.State.Alive Cell.State.Hostile -> B
325
326 let to_cell_state = function
327 | E -> Cell.State.Dead
328 | T -> Cell.State.Alive Cell.State.Friendly
329 | B -> Cell.State.Alive Cell.State.Hostile
330
331 let to_cell t =
332 { Cell.state = t |> to_cell_state
333 ; Cell.pheno = t |> to_pheno
334 }
335
336 let f = 0.000001 (* Probability of spontaneous ignition *)
337 let p = 0.1 (* Probability of spontaneous growth *)
338
339 let is_probable p =
340 (Random.float 1.0) <= p
341
342 let next t ~burning_neighbors =
343 match t, burning_neighbors with
344 | E, _ when is_probable p -> T
345 | E, _ -> E
346 | T, 0 when is_probable f -> B
347 | T, _ when burning_neighbors > 0 -> B
348 | T, _ -> T
349 | B, _ -> E
350 end
351
352 let create () =
353 Random.int 3 |> State.of_int |> State.to_cell
354
355 let count_of_burning =
356 List.map ~f:State.of_cell_state
357 |- List.filter ~f:State.is_burning
358 |- List.map ~f:State.to_int
359 |- List.fold_left ~f:(+) ~init:0
360
361 let transition ~self ~neighbors =
362 self |> State.of_cell_state
363 |> State.next ~burning_neighbors:(count_of_burning neighbors)
364 |> State.to_cell
365 end
366
367
368 module Automaton :
369 sig
370 type t
371
372 val create : rows:int
373 -> columns:int
374 -> interval:float
375 -> rules: (module RULE) list
376 -> t
377
378 val loop : t -> unit
379 end =
380 struct
381 type cell = { data : Cell.t
382 ; rule : (module RULE)
383 }
384
385 type t = { grid : cell Matrix.t
386 ; interval : Time.Span.t
387 ; bar : string
388 }
389
390 let create ~rows:rs ~columns:ks ~interval ~rules =
391 let n = List.length rules in
392 let init () =
393 let rule = List.nth_exn rules (Random.int n) in
394 let module Rule = (val rule : RULE) in
395 { rule
396 ; data = Rule.create ()
397 }
398 in
399 Terminal.clear ();
400 { grid = Matrix.map ~f:init (Matrix.create ~rs ~ks ())
401 ; interval = Time.Span.of_float interval
402 ; bar = String.make ks '-'
403 }
404
405 let cell_to_string cell =
406 PhenoType.to_string cell.data.Cell.pheno
407
408 let print t =
409 Terminal.reset ();
410 print_endline t.bar;
411 Matrix.print t.grid ~to_string:cell_to_string;
412 print_endline t.bar
413
414 let next t =
415 let grid =
416 Matrix.mapi t.grid ~f:(
417 fun point {rule; data} ->
418 let module Rule = (val rule : RULE) in
419 let neighbors = Matrix.get_neighbors t.grid point in
420 let data =
421 Rule.transition
422 ~self:data.Cell.state
423 ~neighbors:(List.map neighbors ~f:(fun c -> c.data.Cell.state))
424 in
425 {rule; data}
426 )
427 in
428 {t with grid}
429
430 let rec loop t =
431 print t;
432 Time.pause t.interval;
433 loop (next t)
434 end
435
436
437 let main interval () =
438 Random.self_init ();
439 let rows, columns = Or_error.ok_exn Linux_ext.get_terminal_size () in
440 let rules =
441 [ (module Life : RULE)
442 ; (module ForestFire : RULE)
443 ]
444 in
445 Automaton.loop (Automaton.create ~rows:(rows - 3) ~columns ~interval ~rules)
446
447
448 let spec =
449 let summary = "Polymorphic Cellular Automata" in
450 let spec = Command.Spec.(empty
451 +> flag "-i" (optional_with_default 0.1 float)
452 ~doc:" Induced interval between generations."
453 )
454 in
455 Command.basic ~summary spec main
456
457
458 let () = Command.run spec
This page took 0.105429 seconds and 5 git commands to generate.