62730e4457959cf013f49f52427f9952d252f10c
[cellular-automata.git] / polymorphism / 001 / src / polymorphism.ml
1 open Core.Std
2
3
4 let (|-) g f x = f (g x)
5
6
7 module Terminal :
8 sig
9 type color = [ `green
10 | `red
11 | `white
12 ]
13
14 val string_with_color : string -> color -> string
15
16 val clear : unit -> unit
17
18 val reset : unit -> unit
19 end =
20 struct
21 type color = [ `green
22 | `red
23 | `white
24 ]
25
26 let ansi_code_clear = "\027[2J" (* Clear screen *)
27 let ansi_code_reset = "\027[1;1H" (* Reset cursor position *)
28
29 let string_of_color = function
30 | `green -> "\027[0;32m"
31 | `red -> "\027[1;31m"
32 | `white -> "\027[1;37m"
33
34 let string_with_color s c =
35 sprintf "%s%s\027[0m" (string_of_color c) s
36
37 let clear () =
38 print_string ansi_code_clear
39
40 let reset () =
41 print_string ansi_code_reset
42 end
43
44
45 module Matrix :
46 sig
47 module Point :
48 sig
49 type t = {r : int; k : int}
50 end
51
52 type 'a t
53
54 val create : rs:int -> ks:int -> 'a -> 'a t
55
56 val get_neighbors : 'a t -> Point.t -> 'a list
57
58 val map : 'a t -> f:('a -> 'b) -> 'b t
59
60 val mapi : 'a t -> f:(Point.t -> 'a -> 'b) -> 'b t
61
62 val iter : 'a t -> f:(Point.t -> 'a -> unit) -> unit
63
64 val print : 'a t -> to_string:('a -> string) -> unit
65 end =
66 struct
67 module Point =
68 struct
69 type t = {r : int; k : int}
70
71 let (+) p p' =
72 { r = p.r + p'.r
73 ; k = p.k + p'.k
74 }
75 end
76
77 module Direction =
78 struct
79 type t = NW | N | NE
80 | W | E
81 | SW | S | SE
82
83 let all = [ NW ; N ; NE
84 ; W ; E
85 ; SW ; S ; SE
86 ]
87
88 let to_offset =
89 let open Point in
90 function
91 | NW -> {r = -1; k = -1}
92 | N -> {r = -1; k = 0}
93 | NE -> {r = -1; k = 1}
94 | W -> {r = 0; k = -1}
95 | E -> {r = 0; k = 1}
96 | SW -> {r = 1; k = -1}
97 | S -> {r = 1; k = 0}
98 | SE -> {r = 1; k = 1}
99 end
100
101 type 'a t = 'a array array
102
103 let create ~rs ~ks x =
104 Array.make_matrix ~dimx:rs ~dimy:ks x
105
106 let iter t ~f =
107 Array.iteri t ~f:(
108 fun r ks ->
109 Array.iteri ks ~f:(
110 fun k x ->
111 f {Point.r; Point.k} x
112 )
113 )
114
115 let print t ~to_string =
116 Array.iter t ~f:(
117 fun r ->
118 Array.iter r ~f:(fun x -> printf "%s" (to_string x));
119 print_newline ()
120 )
121
122 let map t ~f =
123 Array.map t ~f:(Array.map ~f:(fun x -> f x))
124
125 let mapi t ~f =
126 Array.mapi t ~f:(
127 fun r ks ->
128 Array.mapi ks ~f:(
129 fun k x ->
130 f {Point.r; Point.k} x
131 )
132 )
133
134 let get t {Point.r; Point.k} =
135 t.(r).(k)
136
137 let is_within_bounds t {Point.r; Point.k} =
138 match t with
139 | [||] -> assert false
140 | t ->
141 r >= 0 && r < Array.length t &&
142 k >= 0 && k < Array.length t.(0)
143
144 let neighborhood t point =
145 List.map Direction.all ~f:Direction.to_offset
146 |> List.map ~f:(fun offset_point -> Point.(point + offset_point))
147 |> List.filter ~f:(is_within_bounds t)
148
149 let get_neighbors t point =
150 List.map (neighborhood t point) ~f:(get t)
151 end
152
153
154 module PhenoType :
155 sig
156 type t
157
158 val create : char -> Terminal.color option -> t
159
160 val to_string : t -> string
161 end =
162 struct
163 type t = { color : Terminal.color option
164 ; character : char
165 }
166
167 let create character color =
168 {color; character}
169
170 let to_string = function
171 | {color=None; character} ->
172 String.of_char character
173 | {color=Some c; character} ->
174 Terminal.string_with_color (String.of_char character) c
175 end
176
177
178 module Cell =
179 struct
180 module State =
181 struct
182 type intention = Friendly
183 | Neutral
184 | Hostile
185
186 type t = Alive of intention
187 | Dead
188 end
189
190 type t = { state : State.t
191 ; pheno : PhenoType.t
192 }
193 end
194
195
196 module type RULE =
197 sig
198 val create : unit -> Cell.t
199
200 val transition : self:Cell.State.t
201 -> neighbors:Cell.State.t list
202 -> Cell.t
203 end
204
205
206 module Life : RULE =
207 struct
208 module State :
209 sig
210 type t = D | A
211
212 val of_int : int -> t
213
214 val to_int : t -> int
215
216 val to_cell : t -> Cell.t
217
218 val of_cell_state : Cell.State.t -> t
219
220 val next : t -> live_neighbors:int -> t
221 end =
222 struct
223 type t = D | A
224
225 let of_int = function
226 | 0 -> D
227 | 1 -> A
228 | _ -> assert false
229
230 let to_int = function
231 | D -> 0
232 | A -> 1
233
234 let to_pheno = function
235 | D -> PhenoType.create ' ' None
236 | A -> PhenoType.create 'o' (Some `white)
237
238 let of_cell_state = function
239 | Cell.State.Dead -> D
240 | Cell.State.Alive Cell.State.Friendly -> A
241 | Cell.State.Alive Cell.State.Neutral -> A
242 | Cell.State.Alive Cell.State.Hostile -> D
243
244 let to_cell_state = function
245 | D -> Cell.State.Dead
246 | A -> Cell.State.Alive Cell.State.Neutral
247
248 let to_cell t =
249 { Cell.state = t |> to_cell_state
250 ; Cell.pheno = t |> to_pheno
251 }
252
253 let next t ~live_neighbors =
254 match t with
255 | A when live_neighbors < 2 -> D
256 | A when live_neighbors < 4 -> A
257 | A when live_neighbors > 3 -> D
258 | D when live_neighbors = 3 -> A
259 | A -> A
260 | D -> D
261 end
262
263 let create () =
264 Random.int 2 |> State.of_int |> State.to_cell
265
266 let live_neighbors neighbors =
267 neighbors |> List.map ~f:(State.of_cell_state |- State.to_int)
268 |> List.fold_left ~init:0 ~f:(+)
269
270 let transition ~self ~neighbors =
271 self |> State.of_cell_state
272 |> State.next ~live_neighbors:(live_neighbors neighbors)
273 |> State.to_cell
274 end
275
276
277 module ForestFire : RULE =
278 struct
279 module State :
280 sig
281 type t = E | T | B
282
283 val is_burning : t -> bool
284
285 val of_int : int -> t
286
287 val to_int : t -> int
288
289 val to_cell : t -> Cell.t
290
291 val of_cell_state : Cell.State.t -> t
292
293 val next : t -> burning_neighbors:int -> t
294 end =
295 struct
296 type t = E | T | B
297
298 let is_burning = function
299 | E -> false
300 | T -> false
301 | B -> true
302
303 let of_int = function
304 | 0 -> E
305 | 1 -> T
306 | 2 -> B
307 | _ -> assert false
308
309 let to_int = function
310 | E -> 0
311 | T -> 1
312 | B -> 2
313
314 let to_pheno = function
315 | E -> PhenoType.create ' ' None
316 | T -> PhenoType.create 'T' (Some `green)
317 | B -> PhenoType.create '#' (Some `red)
318
319 let of_cell_state = function
320 | Cell.State.Dead -> E
321 | Cell.State.Alive Cell.State.Friendly -> T
322 | Cell.State.Alive Cell.State.Neutral -> E
323 | Cell.State.Alive Cell.State.Hostile -> B
324
325 let to_cell_state = function
326 | E -> Cell.State.Dead
327 | T -> Cell.State.Alive Cell.State.Friendly
328 | B -> Cell.State.Alive Cell.State.Hostile
329
330 let to_cell t =
331 { Cell.state = t |> to_cell_state
332 ; Cell.pheno = t |> to_pheno
333 }
334
335 let f = 0.000001 (* Probability of spontaneous ignition *)
336 let p = 0.1 (* Probability of spontaneous growth *)
337
338 let is_probable p =
339 (Random.float 1.0) <= p
340
341 let next t ~burning_neighbors =
342 match t, burning_neighbors with
343 | E, _ when is_probable p -> T
344 | E, _ -> E
345 | T, 0 when is_probable f -> B
346 | T, _ when burning_neighbors > 0 -> B
347 | T, _ -> T
348 | B, _ -> E
349 end
350
351 let create () =
352 Random.int 3 |> State.of_int |> State.to_cell
353
354 let burning_neighbors neighbors =
355 neighbors |> List.map ~f:State.of_cell_state
356 |> List.filter ~f:State.is_burning
357 |> List.map ~f:State.to_int
358 |> List.fold_left ~init:0 ~f:(+)
359
360 let transition ~self ~neighbors =
361 self |> State.of_cell_state
362 |> State.next ~burning_neighbors:(burning_neighbors neighbors)
363 |> State.to_cell
364 end
365
366
367 module Automaton :
368 sig
369 type t
370
371 val create : rows:int
372 -> columns:int
373 -> interval:float
374 -> rules: (module RULE) list
375 -> t
376
377 val loop : t -> unit
378 end =
379 struct
380 type cell = { data : Cell.t
381 ; rule : (module RULE)
382 }
383
384 type t = { grid : cell Matrix.t
385 ; interval : Time.Span.t
386 ; bar : string
387 }
388
389 let create ~rows:rs ~columns:ks ~interval ~rules =
390 let n = List.length rules in
391 let init () =
392 let rule = List.nth_exn rules (Random.int n) in
393 let module Rule = (val rule : RULE) in
394 { rule
395 ; data = Rule.create ()
396 }
397 in
398 Terminal.clear ();
399 { grid = Matrix.map ~f:init (Matrix.create ~rs ~ks ())
400 ; interval = Time.Span.of_float interval
401 ; bar = String.make ks '-'
402 }
403
404 let cell_to_string cell =
405 PhenoType.to_string cell.data.Cell.pheno
406
407 let print t =
408 Terminal.reset ();
409 print_endline t.bar;
410 Matrix.print t.grid ~to_string:cell_to_string;
411 print_endline t.bar
412
413 let next t =
414 let grid =
415 Matrix.mapi t.grid ~f:(
416 fun point {rule; data} ->
417 let module Rule = (val rule : RULE) in
418 let neighbors = Matrix.get_neighbors t.grid point in
419 let data =
420 Rule.transition
421 ~self:data.Cell.state
422 ~neighbors:(List.map neighbors ~f:(fun c -> c.data.Cell.state))
423 in
424 {rule; data}
425 )
426 in
427 {t with grid}
428
429 let rec loop t =
430 print t;
431 Time.pause t.interval;
432 loop (next t)
433 end
434
435
436 let main interval () =
437 Random.self_init ();
438 let rows, columns = Or_error.ok_exn Linux_ext.get_terminal_size () in
439 let rules =
440 [ (module Life : RULE)
441 ; (module ForestFire : RULE)
442 ]
443 in
444 Automaton.loop (Automaton.create ~rows:(rows - 3) ~columns ~interval ~rules)
445
446
447 let spec =
448 let summary = "Polymorphic Cellular Automata" in
449 let spec = Command.Spec.(empty
450 +> flag "-i" (optional_with_default 0.1 float)
451 ~doc:" Induced interval between generations."
452 )
453 in
454 Command.basic ~summary spec main
455
456
457 let () = Command.run spec
This page took 0.063426 seconds and 4 git commands to generate.