Commit | Line | Data |
---|---|---|
a6244ba2 SK |
1 | -module(hope_list). |
2 | ||
3 | -export_type( | |
4 | [ t/1 | |
5 | ]). | |
6 | ||
7 | -export( | |
8 | [ unique_preserve_order/1 | |
ff793acf | 9 | , map/2 |
781f182f | 10 | , map/3 % Tunable recursion limit |
c66ddf80 | 11 | , map_rev/2 |
2a81fbac | 12 | , map_slow/2 |
54ab0c82 | 13 | , map_result/2 % Not tail-recursive |
a626cf31 | 14 | , first_match/2 |
fcfc097a | 15 | , divide/2 |
a6244ba2 SK |
16 | ]). |
17 | ||
781f182f | 18 | -define(DEFAULT_RECURSION_LIMIT, 1000). |
ff793acf | 19 | |
a6244ba2 SK |
20 | -type t(A) :: |
21 | [A]. | |
22 | ||
ff793acf SK |
23 | %% @doc Tail-recursive equivalent of lists:map/2 |
24 | %% @end | |
25 | -spec map([A], fun((A) -> (B))) -> | |
26 | [B]. | |
27 | map(Xs, F) -> | |
781f182f | 28 | map(Xs, F, ?DEFAULT_RECURSION_LIMIT). |
ff793acf | 29 | |
781f182f | 30 | -spec map([A], fun((A) -> (B)), RecursionLimit :: non_neg_integer()) -> |
ff793acf | 31 | [B]. |
781f182f SK |
32 | map(Xs, F, RecursionLimit) -> |
33 | map(Xs, F, RecursionLimit, 0). | |
34 | ||
35 | map([], _, _, _) -> | |
ff793acf | 36 | []; |
781f182f | 37 | map([X1], F, _, _) -> |
ff793acf SK |
38 | Y1 = F(X1), |
39 | [Y1]; | |
781f182f | 40 | map([X1, X2], F, _, _) -> |
ff793acf SK |
41 | Y1 = F(X1), |
42 | Y2 = F(X2), | |
43 | [Y1, Y2]; | |
781f182f | 44 | map([X1, X2, X3], F, _, _) -> |
ff793acf SK |
45 | Y1 = F(X1), |
46 | Y2 = F(X2), | |
47 | Y3 = F(X3), | |
48 | [Y1, Y2, Y3]; | |
781f182f | 49 | map([X1, X2, X3, X4], F, _, _) -> |
ff793acf SK |
50 | Y1 = F(X1), |
51 | Y2 = F(X2), | |
52 | Y3 = F(X3), | |
53 | Y4 = F(X4), | |
54 | [Y1, Y2, Y3, Y4]; | |
781f182f | 55 | map([X1, X2, X3, X4, X5 | Xs], F, RecursionLimit, RecursionCount) -> |
ff793acf SK |
56 | Y1 = F(X1), |
57 | Y2 = F(X2), | |
58 | Y3 = F(X3), | |
59 | Y4 = F(X4), | |
60 | Y5 = F(X5), | |
61 | Ys = | |
781f182f | 62 | case RecursionCount > RecursionLimit |
ff793acf | 63 | of true -> map_slow(Xs, F) |
781f182f | 64 | ; false -> map (Xs, F, RecursionLimit, RecursionCount + 1) |
ff793acf SK |
65 | end, |
66 | [Y1, Y2, Y3, Y4, Y5 | Ys]. | |
67 | ||
2a81fbac SK |
68 | %% @doc lists:reverse(map_rev(L, F)) |
69 | %% @end | |
70 | -spec map_slow([A], fun((A) -> (B))) -> | |
71 | [B]. | |
72 | map_slow(Xs, F) -> | |
73 | lists:reverse(map_rev(Xs, F)). | |
74 | ||
5e20a667 SK |
75 | %% @doc Tail-recursive alternative to lists:map/2, which accumulates and |
76 | %% returns list in reverse order. | |
c66ddf80 SK |
77 | %% @end |
78 | -spec map_rev([A], fun((A) -> (B))) -> | |
79 | [B]. | |
80 | map_rev(Xs, F) -> | |
81 | map_rev_acc(Xs, F, []). | |
82 | ||
83 | -spec map_rev_acc([A], fun((A) -> (B)), [B]) -> | |
84 | [B]. | |
85 | map_rev_acc([], _, Ys) -> | |
86 | Ys; | |
87 | map_rev_acc([X|Xs], F, Ys) -> | |
88 | Y = F(X), | |
89 | map_rev_acc(Xs, F, [Y|Ys]). | |
90 | ||
54ab0c82 SK |
91 | -spec map_result([A], fun((A) -> (hope_result:t(B, C)))) -> |
92 | hope_result:t([B], C). | |
93 | map_result([], _) -> | |
94 | {ok, []}; | |
95 | map_result([X | Xs], F) -> | |
96 | case F(X) | |
97 | of {ok, Y} -> | |
98 | case map_result(Xs, F) | |
99 | of {ok, Ys} -> | |
100 | {ok, [Y | Ys]} | |
101 | ; {error, _}=Error -> | |
102 | Error | |
103 | end | |
104 | ; {error, _}=Error -> | |
105 | Error | |
106 | end. | |
c66ddf80 | 107 | |
a6244ba2 SK |
108 | -spec unique_preserve_order(t(A)) -> |
109 | t(A). | |
110 | unique_preserve_order(L) -> | |
17b5d686 | 111 | PrependIfNew = |
a6244ba2 SK |
112 | fun (X, Xs) -> |
113 | case lists:member(X, Xs) | |
17b5d686 SK |
114 | of true -> Xs |
115 | ; false -> [X | Xs] | |
a6244ba2 SK |
116 | end |
117 | end, | |
17b5d686 | 118 | lists:reverse(lists:foldl(PrependIfNew, [], L)). |
a626cf31 SK |
119 | |
120 | -spec first_match([{Tag, fun((A) -> boolean())}], A) -> | |
121 | hope_option:t(Tag). | |
122 | first_match([], _) -> | |
123 | none; | |
124 | first_match([{Tag, F} | Tests], X) -> | |
125 | case F(X) | |
126 | of true -> {some, Tag} | |
127 | ; false -> first_match(Tests, X) | |
128 | end. | |
fcfc097a SK |
129 | |
130 | %% @doc Divide list into sublists of up to a requested size + a remainder. | |
131 | %% Order unspecified. Size < 1 raises an error: | |
132 | %% `hope_list__divide__size_must_be_a_positive_integer' | |
133 | %% @end | |
134 | -spec divide([A], pos_integer()) -> | |
135 | [[A]]. | |
136 | divide(_, Size) when Size < 1 orelse not is_integer(Size) -> | |
137 | % Q: Why? | |
138 | % A: For N < 0, what does it mean to have a negative-sized chunk? | |
139 | % For N = 0, we can imagine that a single chunk is an empty list, but, | |
140 | % how many such chunks should we produce? | |
141 | % This is pretty-much equivalnet to the problem of deviding something by 0. | |
142 | error(hope_list__divide__size_must_be_a_positive_integer); | |
143 | divide([], _) -> | |
144 | []; | |
145 | divide([X1 | Xs], MaxChunkSize) -> | |
146 | MoveIntoChunks = | |
147 | fun (X2, {Chunk, Chunks, ChunkSize}) when ChunkSize >= MaxChunkSize -> | |
148 | {[X2], [Chunk | Chunks], 1} | |
149 | ; (X2, {Chunk, Chunks, ChunkSize}) -> | |
150 | {[X2 | Chunk], Chunks, ChunkSize + 1} | |
151 | end, | |
152 | {Chunk, Chunks, _} = lists:foldl(MoveIntoChunks, {[X1], [], 1}, Xs), | |
153 | [Chunk | Chunks]. |