#! /usr/bin/awk -f # # Plot Simply # # TODO: Incremental plotting (new canvas for each data line) # TODO: Support manual set of max y function orange(str) {return "\033[33m" str "\033[0m";} function orange_bright(str) {return "\033[1;33m" str "\033[0m";} function green(str) {return "\033[32m" str "\033[0m";} function grey_dark(str) {return "\033[30m" str "\033[0m";} function grey_light(str) {return "\033[37m" str "\033[0m";} function abs(n) {return n >= 0 ? n : -n} function round(n_float) {return int(n_float + 0.5)} function log_10(n) {return log(n) / log(10)} function width(n, w) { # # log(0) == -inf # w = 1 + round(n > 0 ? log_10(n) : (n == 0 ? 1 : log_10(-n) + 1)); # +1 for neg sign #printf("n: %d, w: %d\n", n, w); return w; } function bins_append_item_to_bin(bin, val, bin_i) { bin_i = bin_item_count[bin]++; bins[bin, bin_i] = val; } BEGIN { # CLI options: w, h, p, a, b limits["canvas_width"] = (w ? w : 70); limits["canvas_height"] = (h ? h : 20); char_point = orange_bright(p ? p : "."); char_pad = grey_dark(a ? a : ""); # FIXME: non-blank pad is broken after adding the y labels char_blank = grey_dark(b ? b : "|"); aggregation = g ? g : "mean"; data_field = df ? df : 1; y_orig_min = 0; y_orig_max = 0; } { y_orig = $data_field; if (y_orig > y_orig_max) y_orig_max = y_orig; if (y_orig < y_orig_min) y_orig_min = y_orig; data_0[NR] = y_orig; } function aggregate_mean() { } function aggregate(array) { if (aggregation == "mean") { return aggregate_mean(array); } else { printf("Unknown aggregation: %s\n", aggregation) > "/dev/stderr"; exit(2); } } function data_scaled_x_to_width(\ data_in, data_out, limits, x_orig, datum, x_bin, bins, bin_item_counts, bin_sum, bin_item_count, i, bin_item, bin_mean \ ) { # Find limit points x_orig_min = 0; x_orig_max = 0; for (x_orig in data_in) { if (x_orig > x_orig_max) x_orig_max = x_orig; if (x_orig < x_orig_min) x_orig_min = x_orig; } #x_orig_range = x_orig_max - x_orig_min; # Place items in bins x_bin_min = 0; x_bin_max = 0; for (x_orig in data_in) { datum = data_in[x_orig]; x_bin = round(x_orig * limits["canvas_width_x"] / length(data_in)); if (x_bin > x_bin_max) x_bin_max = x_bin; if (x_bin < x_bin_min) x_bin_min = x_bin; bin_item_count = ++bin_item_counts[x_bin]; bins[x_bin, bin_item_count] = datum; #printf("x_orig: %f, x_bin: %f, bin_item_count: %f, datum: %f\n", x_orig, x_bin, bin_item_count, datum); } # Aggregate bins for (x_bin in bin_item_counts) { bin_sum = 0; bin_item_count = bin_item_counts[x_bin]; for (i = 1; i <= bin_item_count; i++) { bin_item = bins[x_bin, i]; bin_sum += bin_item; #printf("x_bin: %f, bin_item_count: %f, bin_item: %f, bin_sum: %f\n", x_bin, bin_item_count, bin_item, bin_sum); } bin_mean = bin_sum / bin_item_count; data_out[x_bin] = bin_mean; #printf("x_bin: %f, bin_mean: %f, bin_sum: %f, bin_item_count: %f\n", #x_bin, bin_mean, bin_sum, bin_item_count); } limits["x_min"] = x_bin_min; limits["x_max"] = x_bin_max; } function data_scaled_y_to_height(\ data_in, data_out, limits, data_scaled, x, y, y_orig, y_scaled \ ) { # Offset orig # TODO: Is there a better, closed-form way to get the offset? # TODO: Is there better way to map canvas to value ranges altogether? if (y_orig_min < 0) { offset_orig = -1 * y_orig_min; } else { offset_orig = 0; } for (x in data_in) { y = data_in[x]; #printf("x: %f, y: %f, y_min: %f, y_max: %f\n", x, y, y_min, y_max); data_in_offsetted[x] = y + offset_orig; } y_orig_offseted_min = y_orig_min + offset_orig; y_orig_offseted_max = y_orig_max + offset_orig; # Scale to height y_scaled_min = 0; y_scaled_max = 0; for (x in data_in_offsetted) { y_orig_offsetted = data_in_offsetted[x]; y_scaled = \ y_orig_offseted_max > 0 \ ? round((y_orig_offsetted * limits["canvas_height"]) / y_orig_offseted_max) \ : 0; #printf(\ #"x: %6.2f, y_orig_offsetted: %6.2f, y_orig_max: %6.2f, y_scaled: %6.2f\n", #x, y_orig_offsetted, y_orig_max, y_scaled); if (y_scaled > y_scaled_max) y_scaled_max = y_scaled; if (y_scaled < y_scaled_min) y_scaled_min = y_scaled; data_out[x] = y_scaled } # Save limits limits["y_min"] = y_scaled_min; limits["y_max"] = y_scaled_max; range_orig = y_orig_max - y_orig_min; offset_scaled = \ range_orig > 0 \ ? round(offset_orig * limits["canvas_height"] / range_orig) \ : 0; limits["offset_scaled"] = offset_scaled; #printf("offset_orig: %f, offset_scaled: %f\n", offset_orig, offset_scaled); } function canvas_init(canvas, width, height, row, col) { for (row=0; row <= height; row++) { for (col=0; col <= width; col++) { canvas[row, col] = char_pad char_blank char_pad; } } } function canvas_overlay_highlight_ticks_x(canvas, limits, row, col) { for (col=limits["canvas_width_y"] - 1; col <= limits["canvas_width"]; col++) { offset = limits["offset_scaled"]; #printf("offset: %f\n", offset); row = 0 + offset; #row = 0; canvas[row, col] = char_pad green("-") char_pad; } } function canvas_overlay_highlight_zero_row(canvas, limits, row, col) { #print "canvas_overlay_highlight_zero_row"; for (col=limits["canvas_width_y"] - 1; col <= limits["canvas_width"]; col++) { offset = limits["offset_scaled"]; row = 0 + offset; #printf("col: %6.2f, row: %6.2f, offset: %f\n", col, row, offset); #row = 0; canvas[row, col] = char_pad green("-") char_pad; } } function canvas_overlay_highlight_zero_col(canvas, limits, row, col) { #print "canvas_overlay_highlight_zero_col"; for (row=0; row <= limits["canvas_height"]; row++) { col = limits["canvas_width_y"]; # was also -1. Why? # TODO: Refactor color/character configs to ease composition canvas[row, col] = green("|"); } canvas[limits["canvas_height"], limits["canvas_width_y"]] = green("+"); canvas[0 , limits["canvas_width_y"]] = green("+"); } function canvas_overlay_highlight_zero(canvas, limits) { #print "canvas_overlay_highlight_zero"; canvas[0 + limits["offset_scaled"], 0 + limits["canvas_width_y"]] = green("+"); } function canvas_overlay_data(canvas, data, limits, x_data, x_canvas, y, yi, yj) { #print "canvas_overlay_data"; for (x_data in data) { x_canvas = x_data + limits["canvas_width_y"] + 1; y = data[x_data]; # TODO: Would be nice to scale width of all cells to the widest #point = y; #printf("canvas_width_y: %6.2f, x0: %6.2f, x1: %6.2f, x: %6.2f, y: %6.2f\n", #limits["canvas_width_y"], x0, x1, x, y); # TODO: This special case for 0 is kind of a kludge - can we do better? canvas[y, x_canvas] = x_data == 0 ? char_point : char_pad char_point char_pad; if (y > limits["offset_scaled"]) { for (yi = y - 1; yi >= limits["offset_scaled"]; yi--) { #printf("yi: %6.2f\n", yi); canvas[yi, x_canvas] = x_data == 0 ? orange("|") : char_pad orange("|") char_pad; } } else if (y < limits["offset_scaled"]) { for (yj = limits["offset_scaled"]; yj > y; yj--) { #printf("yj: %6.2f\n", yj); canvas[yj, x_canvas] = x_data == 0 ? orange("|") : char_pad orange("|") char_pad; } } } } function canvas_overlay_y_lab(canvas, limits, y_lab_fmt, y_max_str, i) { y_lab_fmt = "%" limits["canvas_width_y"] - 1 "d "; y_max_str = sprintf(y_lab_fmt, y_orig_max); y_min_str = sprintf(y_lab_fmt, y_orig_min); #printf("y_width: %f, y_max_str: \"%s\", y_min_str: \"%s\"\n", limits["canvas_width_y"], y_max_str, y_min_str); for (i=1; i<=length(y_max_str); i++) { canvas[limits["canvas_height"], i - 1] = substr(y_max_str, i, 1); } canvas[0 + limits["offset_scaled"], 0 + limits["canvas_width_y"] - 1] = 0; for (i=1; i<=length(y_min_str); i++) { canvas[0, i - 1] = substr(y_min_str, i, 1); } } function canvas_print(canvas, limits, row, col) { for (row = limits["canvas_height"]; row >= 0; row--) { for (col = 0; col <= limits["canvas_width"]; col++) { printf("%s", canvas[row, col]); } printf("\n"); } } END { # Find maximum y number width y_orig_min_width = width(y_orig_min); y_orig_max_width = width(y_orig_max); if (y_orig_max_width >= y_orig_min_width) { y_width = y_orig_max_width; } else { y_width = y_orig_min_width; } limits["canvas_width_y"] = y_width + 1; limits["canvas_width_x"] = limits["canvas_width"] - limits["canvas_width_y"]; data_scaled_x_to_width(data_0, data_1, limits); data_scaled_y_to_height(data_1, data_2, limits); canvas_init(canvas, limits["canvas_width"], limits["canvas_height"]); canvas_overlay_highlight_zero_row(canvas, limits); canvas_overlay_highlight_zero_col(canvas, limits); canvas_overlay_highlight_zero(canvas, limits); canvas_overlay_y_lab(canvas, limits); canvas_overlay_data(canvas, data_2, limits); #for (l in limits) { #printf("limits[%s] -> %s\n", l, limits[l]); #} canvas_print(canvas, limits); } # An even better way to think about scaling: ratios!!! Duh! :-D # # val_max / val_current = width / val_scaled # # val_max width # ----------- = ------------ # val_current val_scaled # # val_max * val_scaled = val_current * width # val_scaled = (val_current * width) / val_max # # # num_data_points width # ---------------- = ----- # x 1 # # width * x = num_data_points # x = num_data_points / width # # But that is what I already tried, and it is awkward to scale up when # thinking thsese terms, so it is much better to first route each data # point to an appropriate bin and then aggregate each bin: # 1. Route: bins[scale(datum)] # 2. Aggregate: for bin in bins: for val in bin: aggregate(val)