open Core.Std module Terminal : sig type color = [ `green | `red ] val string_with_color : string -> color -> string val clear : unit -> unit val reset : unit -> unit end = struct type color = [ `green | `red ] let ansi_code_clear = "\027[2J" (* Clear screen *) let ansi_code_reset = "\027[1;1H" (* Reset cursor position *) let string_of_color = function | `green -> "\027[0;32m" | `red -> "\027[1;31m" let string_with_color s c = sprintf "%s%s\027[0m" (string_of_color c) s let clear () = print_string ansi_code_clear let reset () = print_string ansi_code_reset end module type MATRIX = sig module Point : sig type t = {r : int; k : int} end type 'a t val create : rs:int -> ks:int -> 'a -> 'a t val get_neighbors : 'a t -> Point.t -> 'a list val map : 'a t -> f:('a -> 'b) -> 'b t val mapi : 'a t -> f:(Point.t -> 'a -> 'b) -> 'b t val iter : 'a t -> f:(Point.t -> 'a -> unit) -> unit val print : 'a t -> to_string:('a -> string) -> unit end module Matrix : MATRIX = struct module Point = struct type t = {r : int; k : int} let (+) p p' = { r = p.r + p'.r ; k = p.k + p'.k } end module Direction = struct type t = NW | N | NE | W | E | SW | S | SE let all = [ NW ; N ; NE ; W ; E ; SW ; S ; SE ] let to_offset = let open Point in function | NW -> {r = -1; k = -1} | N -> {r = -1; k = 0} | NE -> {r = -1; k = 1} | W -> {r = 0; k = -1} | E -> {r = 0; k = 1} | SW -> {r = 1; k = -1} | S -> {r = 1; k = 0} | SE -> {r = 1; k = 1} end type 'a t = 'a array array let create ~rs ~ks x = Array.make_matrix ~dimx:rs ~dimy:ks x let iter t ~f = Array.iteri t ~f:( fun r ks -> Array.iteri ks ~f:( fun k x -> f {Point.r; Point.k} x ) ) let print t ~to_string = Array.iter t ~f:( fun r -> Array.iter r ~f:(fun x -> printf "%s" (to_string x)); print_newline () ) let map t ~f = Array.map t ~f:(Array.map ~f:(fun x -> f x)) let mapi t ~f = Array.mapi t ~f:( fun r ks -> Array.mapi ks ~f:( fun k x -> f {Point.r; Point.k} x ) ) let get t {Point.r; Point.k} = t.(r).(k) let is_within_bounds t {Point.r; Point.k} = match t with | [||] -> assert false | t -> r >= 0 && r < Array.length t && k >= 0 && k < Array.length t.(0) let neighborhood t point = List.map Direction.all ~f:Direction.to_offset |> List.map ~f:(fun offset_point -> Point.(point + offset_point)) |> List.filter ~f:(is_within_bounds t) let get_neighbors t point = List.map (neighborhood t point) ~f:(get t) end module Msg = struct type t = string end module State = struct type t = string end module PhenoType = struct type t = string end module Cell = struct type t = { msg : Msg.t ; pheno : PhenoType.t ; state : State.t } end module type RULE = sig val create : unit -> Cell.t val transition : state:State.t -> inputs:Msg.t list -> Cell.t end module Conway : RULE = struct type state = D | A let state_of_string : (string -> state) = function | "D" -> D | "A" -> A | _ -> assert false let state_of_int : (int -> state) = function | 0 -> D | 1 -> A | _ -> assert false let int_of_state : (state -> int) = function | D -> 0 | A -> 1 let string_of_state : (state -> string) = function | D -> "D" | A -> "A" let msg_of_state : (state -> Msg.t) = string_of_state let pheno_of_state : (state -> PhenoType.t) = function | D -> " " | A -> "o" let int_of_msg msg = msg |> state_of_string |> int_of_state let next state ~live_neighbors = match state with | A when live_neighbors < 2 -> D | A when live_neighbors < 4 -> A | A when live_neighbors > 3 -> D | D when live_neighbors = 3 -> A | A -> A | D -> D let cell_of_state s = { Cell.msg = s |> msg_of_state ; Cell.pheno = s |> pheno_of_state ; Cell.state = s |> string_of_state } let create () = Random.int 2 |> state_of_int |> cell_of_state let live_neighbors inputs = inputs |> List.map ~f:int_of_msg |> List.fold_left ~init:0 ~f:(+) let transition ~state ~inputs = state |> state_of_string |> next ~live_neighbors:(live_neighbors inputs) |> cell_of_state end module Automaton : sig type t val create : rows:int -> columns:int -> interval:float -> rules: (module RULE) list -> t val loop : t -> unit end = struct type cell = { data : Cell.t ; rule : (module RULE) } type t = { grid : cell Matrix.t ; interval : Time.Span.t ; bar : string } let create ~rows:rs ~columns:ks ~interval ~rules = let n = List.length rules in let i = Random.int n in let init () = let rule = List.nth_exn rules i in let module Rule = (val rule : RULE) in { rule ; data = Rule.create () } in Terminal.clear (); { grid = Matrix.map ~f:init (Matrix.create ~rs ~ks ()) ; interval = Time.Span.of_float interval ; bar = String.make ks '-' } let cell_to_string cell = cell.data.Cell.pheno let print t = Terminal.reset (); print_endline t.bar; Matrix.print t.grid ~to_string:cell_to_string; print_endline t.bar let next t = let grid = Matrix.mapi t.grid ~f:( fun point {rule; data} -> let module Rule = (val rule : RULE) in let neighbors = Matrix.get_neighbors t.grid point in let data = Rule.transition ~state:data.Cell.state ~inputs:(List.map neighbors ~f:(fun cell -> cell.data.Cell.msg)) in {rule; data} ) in {t with grid} let rec loop t = print t; Time.pause t.interval; loop (next t) end let main () = Random.self_init (); let rows, columns = Or_error.ok_exn Linux_ext.get_terminal_size () in let interval = 0.1 in let rules = [ (module Conway : RULE) ] in Automaton.loop (Automaton.create ~rows:(rows - 3) ~columns ~interval ~rules) let spec = let summary = "Polymorphic Cellular Automata" in let spec = Command.Spec.empty in Command.basic ~summary spec main let () = Command.run spec