module List = ListLabels module A = Tiger_absyn module Dag = Tiger_dag module Env = Tiger_env module E = Tiger_error module Escape = Tiger_semant_escape module Pos = Tiger_position module Sym = Tiger_symbol module Temp = Tiger_temp module Translate = Tiger_translate module Type = Tiger_env_type module Value = Tiger_env_value (* The only reason for having this seemingly-superfluous inner module is to * have this nice signature as a summary of what each function does. *) module Semant : sig type expty = { exp : Translate.exp ; ty : Type.t } (* Violating normal naming convention just to make it easier to follow * Appel's *) val transExp : env:Env.t -> A.exp -> expty (* transVar does not seem to be needed, as trvar handles all our cases. * Am I wrong? * * val transVar : env:Env.t -> A.var -> expty * *) end = struct type expty = { exp : Translate.exp ; ty : Type.t } let rec actual_ty ty ~pos = match ty with | Type.Name (name, ty_opt_ref) -> (match !ty_opt_ref with | None -> E.raise (E.Unknown_type {ty_id=name; pos}) | Some ty -> actual_ty ty ~pos ) | Type.Unit | Type.Nil | Type.Int | Type.String | Type.Record _ | Type.Array _ -> ty let return ty = {exp = Translate.dummy__FIXME; ty} let return_unit = return Type.Unit let return_nil = return Type.Nil let return_int = return Type.Int let return_string = return Type.String let env_get_typ ~sym ~env ~pos : Type.t = match Env.get_typ env sym with | Some ty -> ty | None -> E.raise (E.Unknown_type {ty_id=sym; pos}) let env_get_typ_actual ~sym ~env ~pos : Type.t = actual_ty (env_get_typ ~sym ~env ~pos) ~pos let env_get_val ~sym ~env ~pos : Value.t = match Env.get_val env sym with | Some ty -> ty | None -> E.raise (E.Unknown_id {id=sym; pos}) let check_same {exp=_; ty=ty_left} {exp=_; ty=ty_right} ~pos : unit = if Type.is_equal ty_left ty_right then () else E.raise (E.Wrong_type {expected=ty_left; given=ty_right; pos}) let check_int expty ~pos : unit = check_same return_int expty ~pos let paths_of_typedecs typedecs : (Sym.t * Sym.t * Pos.t) list list = let (path, paths) = List.fold_left typedecs ~init:([], []) ~f:( fun (path, paths) (A.TypeDec {name=child; ty; pos}) -> match ty with | A.NameTy {symbol=parent; _} -> (((parent, child, pos) :: path), paths) | A.RecordTy _ | A.ArrayTy _ -> ([], path :: paths) ) in List.map (path :: paths) ~f:List.rev let check_cycles (typedecs : A.typedec list) : unit = let non_empty_paths = List.filter (paths_of_typedecs typedecs) ~f:(function [] -> false | _ -> true) in List.iter non_empty_paths ~f:( fun path -> match Dag.of_list (List.map path ~f:(fun (p, c, _) -> (p, c))) with | Ok _ -> () | Error `Cycle -> let (_, from_id, from_pos) = List.hd path in let (_, to_id, to_pos) = List.hd (List.rev path) in E.raise (E.Cycle_in_type_decs {from_id; from_pos; to_id; to_pos}) ) let rec transExp ~env exp = let rec trexp exp = (match exp with | A.NilExp -> return_nil | A.IntExp _ -> return_int | A.StringExp {string=_; _} -> return_string | A.CallExp {func; args; pos} -> (match env_get_val ~sym:func ~env ~pos with | Value.Fun {formals; result; level=_; label=_} -> let expected = List.length formals in let given = List.length args in if given = expected then begin List.iter2 formals args ~f:(fun ty_expected exp_given -> check_same (return (actual_ty ~pos ty_expected)) (trexp exp_given) ~pos; ); return (actual_ty ~pos result) end else E.raise (E.Wrong_number_of_args {func; expected; given; pos}) | Value.Var _ -> E.raise (E.Id_not_a_function {id=func; pos}) ) | A.OpExp {oper; left; right; pos} -> trop oper ~left ~right ~pos | A.RecordExp {fields=field_exps; typ; pos} -> let ty = env_get_typ_actual ~sym:typ ~env ~pos in Type.if_record ty ~f:(fun field_tys -> List.iter field_exps ~f:(fun (field, exp, pos) -> (match List.assoc_opt field field_tys with | Some field_ty -> check_same (return (actual_ty ~pos field_ty)) (trexp exp) ~pos | None -> E.raise (E.No_such_field_in_record {field; record=ty; pos}) ) ) ) ~otherwise:(fun () -> E.raise (E.Wrong_type_used_as_record {ty_id=typ; ty; pos}) ); return (actual_ty ~pos ty) | A.SeqExp [] -> return_unit | A.SeqExp exps -> let last xs = xs |> List.rev (* Yes, redundant, but clean-looking ;-P *) |> List.hd (* Empty is matched in above SeqExp match case *) in exps |> List.map ~f:(fun (exp, _) -> trexp exp) |> last | A.AssignExp {var; exp; pos} -> check_same (trvar var) (trexp exp) ~pos; (* TODO: Add var->exp to val env? *) return_unit | A.IfExp {test; then'; else'; pos} -> (* test : must be int, because we have no bool *) (* then : must equal else *) (* else : must equal then or be None *) check_int (trexp test) ~pos; (match (trexp then', else') with | expty_then, None -> expty_then | expty_then, Some else' -> let expty_else = trexp else' in check_same expty_then expty_else ~pos; expty_then ) | A.WhileExp {test; body; pos} -> (* test : must be int, because we have no bool *) check_int (trexp test) ~pos; let (loop, env) = Env.loop_begin env in (* Only care if an error is raised *) ignore (transExp ~env body); ignore (Env.loop_end env loop); return_unit | A.ForExp {var; lo; hi; body; pos; escape=_} -> check_int (trexp lo) ~pos; check_int (trexp hi) ~pos; let (loop, env) = Env.loop_begin env in let level = Env.level_get env in (* Assuming all escape, for now *) let access = Translate.alloc_local ~level ~escapes:true in let env = Env.set_val env var (Value.Var {ty = Type.Int; access}) in (* Only care if an error is raised *) ignore (transExp ~env body); ignore (Env.loop_end env loop); return_unit | A.BreakExp pos -> (match Env.loop_current env with | Some _ -> () | None -> E.raise (E.Break_outside_loop pos) ); return_unit | A.LetExp {decs; body; pos=_} -> (* (1) decs augment env *) (* (2) body checked against the new env *) let env = List.fold_left decs ~init:env ~f:(fun env dec -> transDec dec ~env) in transExp body ~env | A.ArrayExp {typ; size; init; pos} -> check_int (trexp size) ~pos; let ty = env_get_typ_actual ~sym:typ ~env ~pos in Type.if_array ty ~f:(fun ty_elements -> check_same (return (actual_ty ~pos ty_elements)) (trexp init) ~pos ) ~otherwise:(fun () -> E.raise (E.Wrong_type_used_as_array {ty_id=typ; ty; pos}) ); return (actual_ty ~pos ty) | A.VarExp var -> trvar var ) and trvar = (function | A.SimpleVar {symbol=sym; pos} -> (match env_get_val ~sym ~env ~pos with | Value.Fun _ -> E.raise (E.Id_is_a_function {id=sym; pos}) | Value.Var {ty; access=_} -> return (actual_ty ~pos ty) ) | A.FieldVar {var; symbol; pos} -> let {exp=_; ty} = trvar var in Type.if_record ty ~f:(fun fields -> (match List.assoc_opt symbol fields with | None -> E.raise (E.No_such_field_in_record {field=symbol; record=ty; pos}) | Some ty -> return (actual_ty ~pos ty) ) ) ~otherwise:(fun () -> E.raise (E.Exp_not_a_record {ty; pos})) | A.SubscriptVar {var; exp; pos} -> let {exp=_; ty} = trvar var in check_int (trexp exp) ~pos; Type.if_array ty ~f:(fun ty_elements -> return (actual_ty ~pos ty_elements)) ~otherwise:(fun () -> E.raise (E.Exp_not_an_array {ty; pos})) ) and trop oper ~left ~right ~pos = (* TODO: Refactor trop - all opers return bool/int *) let expty_left = trexp left in let expty_right = trexp right in check_same expty_left expty_right ~pos; let {exp=_; ty} = expty_left in let module T = Type in (match oper with (* Arithmetic: int *) | A.PlusOp | A.MinusOp | A.TimesOp | A.DivideOp -> check_int expty_left ~pos; return_int (* Equality: int, string, array, record *) | A.EqOp | A.NeqOp -> if (T.is_int ty) || (T.is_string ty) || (T.is_array ty) || (T.is_record ty) then return_int (* Because we have no bool type *) else E.raise (E.Invalid_operand_type { oper ; valid = ["int"; "string"; "array"; "record"] ; given = ty ; pos }) (* Order: int, string *) | A.LtOp | A.LeOp | A.GtOp | A.GeOp -> if (T.is_int ty) || (T.is_string ty) then return_int (* Because we have no bool type *) else E.raise (E.Invalid_operand_type { oper ; valid = ["int"; "string"] ; given = ty ; pos }) ) in trexp exp and transDec ~(env : Env.t) (dec : A.dec) : Env.t = (match dec with | A.VarDec {name; typ=typ_opt; init; pos=pos_outter; escape=_} -> let ty = (match (typ_opt, transExp ~env init) with | None, {ty; exp=_} -> ty | Some (sym, pos_inner), expty_init -> let ty = env_get_typ_actual ~sym ~env ~pos:pos_inner in check_same (return ty) expty_init ~pos:pos_outter; ty ) in let access = Translate.alloc_local ~level:(Env.level_get env) ~escapes:true (* Assuming all escape, for now... *) in Env.set_val env name (Value.Var {ty; access}) | A.TypeDecs typedecs -> check_cycles typedecs; let env = List.fold_left typedecs ~init:env ~f:( fun env (A.TypeDec {name; ty=_; pos=_}) -> Env.set_typ env name (Type.Name (name, ref None)) ) in List.iter typedecs ~f:(fun (A.TypeDec {name=ty_name; ty=ty_exp; pos}) -> let ty = transTy ~env ~ty_name ~ty_exp in (match env_get_typ ~sym:ty_name ~env ~pos with | Type.Name (_, ty_opt_ref) -> ty_opt_ref := Some ty | Type.Unit | Type.Nil | Type.Int | Type.String | Type.Record _ | Type.Array _ -> () ) ); env | A.FunDecs fundecs -> let env_with_fun_heads_only = List.fold_left fundecs ~init:env ~f:( fun env (A.FunDec {name; params; result; body=_; pos=_}) -> let formals = List.map params ~f:( fun (A.Field {name=_; typ; pos; escape=_}) -> env_get_typ_actual ~env ~sym:typ ~pos ) in let result = match result with | Some (s, p) -> env_get_typ_actual ~sym:s ~env ~pos:p | None -> Type.Unit in let label = Temp.Label.gen () in let level = Translate.Level.next (Env.level_get env) ~name:label (* Assuming all escape (for now) *) ~formals:(List.map formals ~f:(fun _ -> true)) in let env = Env.level_set env level in Env.set_val env name (Value.Fun {formals; result; level; label}) ) in List.iter fundecs ~f:( fun (A.FunDec {name=_; params; result=_; body; pos=_}) -> let env_with_fun_heads_and_local_vars = List.fold_left params ~init:env_with_fun_heads_only ~f:( fun env (A.Field {name=var_name; escape=_; typ; pos}) -> let var_ty = env_get_typ_actual ~env ~sym:typ ~pos in let level = Env.level_get env in (* Assuming all escape, for now *) let access = Translate.alloc_local ~level ~escapes:true in Env.set_val env var_name (Value.Var {ty = var_ty; access}) ) in (* we only care if an exception is raised *) ignore (transExp ~env:env_with_fun_heads_and_local_vars body); ); env_with_fun_heads_only ) and transTy ~(env : Env.t) ~ty_name ~(ty_exp : A.ty) : Type.t = (match ty_exp with | A.NameTy {symbol=sym; pos} -> env_get_typ ~sym ~env ~pos | A.RecordTy fields -> let fields = List.map fields ~f:(fun (A.Field {name; escape=_; typ; pos}) -> let ty = env_get_typ ~sym:typ ~env ~pos in (name, ty) ) in Type.new_record ~name:ty_name ~fields | A.ArrayTy {symbol=sym; pos} -> let element_ty = env_get_typ ~sym ~env ~pos in Type.new_array ~name:ty_name ~ty:element_ty ) end open Semant let transProg absyn = Escape.find ~prog:absyn; let {exp = _; ty = _} = transExp absyn ~env:Env.base in ()